cloak.business

DACH Compliance - Beyond English NER

Standard PII detection tools are built for English. Organizations operating in Germany, Austria, Switzerland, and other non-English markets face significant accuracy gaps. cloak.business provides native support for 48 languages.

82%
Hybrid approach improvement
€2.3B
GDPR fines (2025)
48
Languages supported
317
Pattern recognizers

The Multilingual PII Gap

The DACH region represents one of the world's largest economies with strict data protection enforcement. But most PII detection tools train models primarily on English text, lack German context words for confidence boosting, and miss region-specific identifier formats.

  • NER model blindness - Models trained on English miss German entities
  • Format variations - German tax IDs differ from US formats entirely
  • Dialect confusion - Austrian German uses different terminology than German German
  • Context word gaps - Confidence boosting only works in English

German Identifier Complexity

German-speaking regions use different identifier formats than the US. Standard NER models recognize none of these:

IdentifierFormatNotes
Steuer-ID11 digitsGerman personal tax ID, checksum validated
SteuernummerXX/XXX/XXXXXVaries by Bundesland (state)
PersonalausweisnummerAlphanumericGerman ID card number
Sozialversicherungsnummer10 digits (Austria)Different from German format
AHV-Nummer13 digits (Switzerland)Swiss social insurance number

Multi-Engine NLP Architecture

cloak.business combines three NLP engines for comprehensive coverage:

spaCy

25 languages

German, French, Spanish, Italian, Portuguese, Dutch, Polish, Russian, Japanese, Chinese, and more

Stanza NER

7 languages

Deep learning NER for additional coverage

XLM-RoBERTa

16+ languages

Cross-lingual transformer embeddings

317 Pattern Recognizers

317 Pattern Recognizers with region-specific patterns including German Steuer-ID, Austrian Sozialversicherungsnummer, Swiss AHV-Nummer, Japanese My Number, Korean RRN, and Chinese Resident ID Card.

Accuracy Improvement

ScenarioEnglish-Only Toolscloak.business
German Steuer-ID detection0% (missed)95%+
Austrian identifier detection0% (missed)95%+
German name recognition60-70%90%+
Japanese My Number detection0% (missed)95%+

Key Takeaways

  • Hybrid approaches outperform NER by 82% - Combining regex, NLP, and transformers is essential
  • Regional formats require specialized patterns - NER alone cannot detect structured IDs
  • Context words must be multilingual - Confidence scoring only works with language-appropriate context
  • 48-language support shows commitment - Not just detection, but full localization
  • APAC expansion requires CJK support - Japanese, Korean, Chinese are critical markets

Ready to Protect Your Data?

Start with 200 free tokens per cycle. No credit card required.